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Abstract

This paper investigates the electro-mechanical behaviour of a thick, laminated actuator with piezoelectric and isotro-
pic lamina under externally applied electric loading using a new two-dimensional computational model. The elastic core
is relatively thick and thus it is modelled by Timoshenko thick-beam theory. Although the piezoelectric lamina is a beam-
like layer, it is formulated via a two-dimensional model because of not only the strong electro-mechanical coupling, but
also of the presence of a two-dimensional electric field. It is shown in this paper that a one-dimensional model for the
piezoelectric beam-like layer is inadequate. The piezoelectric model is constructed within the scope of linear piezoelec-
tricity. The actuation response is induced through the application of external electric voltage. Under the strong coupling
of elasticity and electricity, the strain energy and work of electric potential are presented. The electro-mechanical
response of the laminated Timoshenko beam is formulated and determined via a variational energy principle. Numerical
examples presented illustrate convincing comparison with finite element solutions and existing published data. New
numerical solutions are also presented to investigate the geometric effect on the electro-mechanical bending behaviour.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectricity is an electro-mechanical phenomenon which couples elasticity and electricity through
the existence of pressure induced electrical field or electric induced stress field. This phenomenon was first
discovered by Curie brothers in 1880 (Cady, 1964) and since then, research on piezoelectricity has received
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much attention (e.g. Tiersten, 1969; Mason, 1981). Piezoelectric materials have wide range of industrial
applications. During the past decade, this material has been used extensively as sensors and/or actuators
for controlling vibration, noise and shape of a structural system, and also as the essential component in
an accelerometer. In addition, the use of piezoelectric materials as a media to transform electrical and acous-
tic waves has made telecommunication possible. The advanced micro-electro-mechanical systems (MEMS)
use piezoelectric materials in the latest technologies of smart/intelligent designs featuring miniaturization.

One of the practical examples of a piezoelectric device is a piezoelectric accelerometer for triggering the
onset of an airbag in tens of thousandths of a second during an accident. The electro-mechanical coupling
of piezoelectric materials has immense technological potential in designing smart/intelligent materials and
structures ranging from huge aerospace structures to miniatural medical apparatuses. Because of the relative
small size and light weight, piezoelectric elements can be integrated in a complex actuator network, such as in
robotics design, without significantly affecting the structural properties of the entire system. In order to mobi-
lise piezoelectric effects, the piezoelectric materials are usually surface bonded in patches or fully embedded in
the host structure. Hence the structure becomes a laminated piezoelectric actuator. A system with multiple
substructures such as a robotic arm may be constituted by a few laminated piezoelectric actuators.

Basic mechanical models for the interaction between an actuator and piezoelectric material have been
proposed by many different researchers. As the volume of published papers is large, only relevant and
key papers are referenced here. Crawley and de Luis (1987) developed an analytical model with the piezo-
electric patches in the beam. They also presented experimental results for their model. Crawley and Ander-
son (1990) later revised the model based on Euler beam assumption of the displacement function. Tzou and
Gadre (1989), Lee (1990), Crawley and Lazarus (1991) developed laminated plate models incorporating the
piezoelectric property of materials by using classical laminated theory approximation. Later, Tzou and
Zhong (1993) revised the model based on first order shear deformation theory. A very good reference
for piezoelectric plate and shell was presented by Tzou (1993). Piezoelectric layers are also frequently used
as sensing/actuating elements for control of structures, such as in the postbuckling analysis of thick lam-
inated plates (Shen, 2001) and laminated cylindrical shells (Shen, 2002). Other relevant works include those
of Lee and Moon (1989), Wang and Rogers (1991), Koconis et al. (1994a,b), Mitchell and Reddy (1995),
Reddy and Mitchell (1995), Saravanos and Heyliger (1995), Batra et al. (1996a,b), Cheng et al. (1999, 2000),
He et al. (2000), Lim et al. (2001), Lim and He (2001, 2004), Meguid and Chen (2001), Meguid and Zhao
(2002), Cheng and Reddy (2002), He and Lim (2003), Wang and Liew (2003), Liew and Liang (2003), Liew
et al. (2003). Recently, Lin et al. (2000) derived an analytic solution of a laminated piezoelectric beam based
on the two-dimensional constitutive relationships. Huang and Sun (2001) developed an approximate ana-
lytical solutions based on linear piezoelectric and Mindlin lamination theory. Luo and Tong (2002) also
developed an exact static solution to smart beams by including peel stresses. Yocum and Abramovich
(2002) provided the experimental results on the behaviour of a cantilever beam actuated using piezoelectric
patches. A new efficient higher order zigzag theory for composite beams was recently modelled by Kapuria
et al. (2003a,b,c, 2004a,b) and it has been successfully applied to many significant engineering problems
such as for sandwich piezoelectric beams (Kapuria et al., 2003a), thermal stress analysis (Kapuria et al.,
2003b), dynamic analysis (Kapuria et al., 2003c), hybrid piezoelectric beams (Kapuria et al., 2004a) and
static loading, buckling, free and forced response of composite and sandwich beams (Kapuria et al., 2004b).

Many of the published papers on piezoelectric laminates considered only thin piezoelectric and elastic
layers. However, thick rods or structures with piezoelectric patches exist in many designs such as in the con-
trol of robotic arms. Therefore, the mere analysis of thin piezoelectric laminated beams or plates is insuf-
ficient in these devices. Although there are certain efforts in three-dimensional analysis of piezoelectric
structures (Cheng and Reddy, 2002), the approaches require complicated asymptotic analysis and are some-
what deterrent. In an effort to simplify the analysis, this paper presents an efficient two-dimensional model
for the analysis of electro-mechanical response of thick laminated piezoelectric actuators. The piezoelectric
model is constructed within the scope of linear piezoelectricity and, therefore, the analysis focuses on low
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electric potential differences where such linear piezoelectric constitutive relations are appropriate. Beyond
this limit and at high levels of potential difference, especially for moderate to high electric drive inputs for
the actuators, hysteresis and nonlinear constitutive relations are inherent to the piezoelectric materials.

Although only electric loading generated by an applied potential difference is considered, the model
established in this paper is valid for any combination of mechanical and electrical loadings. Timoshenko
beam theory including shear deformation is used to model the thick elastic core. Although the piezoelectric
lamina is a beam-like layer, it is formulated via a two-dimensional model because of not only the strong
electro-mechanical coupling, but also the presence of a two-dimensional electric field. It is shown in this
paper that a one-dimensional model for the piezoelectric beam-like layer is inadequate. A variational en-
ergy principle is employed in the modelling of bending strain energy and work of electric potential. Com-
parison with existing data and finite element solutions are presented to verify the correctness of the
approach. Additional new numerical examples are also included to illustrate the effects of geometry and
electric field characteristics on the various actuation responses.

2. Formulation of thick laminated actuator

A laminated, cantilever thick actuator of length L and width b is considered. It consists of a thick, elastic
core with thickness /. covered with a piezoelectric layer at the top with thickness /,, as shown in Fig. 1.
Hereafter, a subscript e denotes quantities of the elastic core while a subscript p denotes quantities of
the piezoelectric layer. The top and bottom surfaces of the laminate are free of shear traction. Two layers
of electrode of negligible thickness and negligible stiffness are sandwiched across the piezoelectric layer and
an electric potential difference V' is applied across the layer. Although the analysis here illustrates a two-
layer laminated actuator, it can be easily extended to a multi-layered composite laminate having many pie-
zoelectric layers with various polarization orientations. A rectangular coordinate system (xi,x,Xx3) or
(x,,z) is introduced so that the (xy, x;,0)-plane coincides with the mid-plane of the elastic core. Referring
to this coordinate system, the stress and strain tensors, ¢ and &, the displacement, electric field and electric
displacement vectors, u, E and D, are denoted according to the usual Voigt’s notation, in turn, by

T T
0'2[011 O 033 023 O3 012] 2[01 Gy 03 04 O5 06]’
82[811 &) &3 2e3 e 2812]T=[81 & & &4 & 86]T,
T
ll:[ul 1253 u3], (1)
T
Ezi[wvl (2%) @73] )

D=[D, D, D3]T,

‘F
Piezoelectric Electrodes
vy WL/ 5
he » X
Elastic
d L -
[} L}

Fig. 1. Laminated thick piezoelectric actuator.
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where ¢ is electric potential, T stands for transpose, and a comma refers to partial differentiation with re-
spect to the suffix variable. Using the usual notation, the infinitesimal strain components are related to the
displacement components by

1
&ij = 5 (ui7j + u/7i)7 (2)

where lower case Latin indices take the value of 1, 2 or 3, and two repeated indices imply summation.

For simplicity, the piezoelectric element in the laminate is assumed to be poled along the positive direc-
tion of x3, and possess the material symmetry of 6 mm, i.e. the material is transversely isotropic (Tzou,
1993). The case of more general material symmetry can also be considered via the present method, but
for brevity the analysis will not be given here. In the scope of linear piezoelectricity, the constitutive rela-
tions can be written as (Nye, 1976)

6=Cs:—e'E, D=ec+«kE, (3)
where C, e and k, being 6 X 6, 3 X 6 and 3 x 3 matrices, stand for the elasticity, piezoelectricity and dielec-

tricity tensors as presented in Appendix A. Under quasi-static conditions, the stress and electric displace-
ment satisfy the following equilibrium equations,

O’UJ = O7 Di,l = 0 (4)
In accordance with the variational energy principle (Reddy, 1984; Tzou, 1993), we define an energy func-

tional IT as the difference of the total strain energy of the structure, U = U, + U,,, and the work done by an
external electric potential, W, as

M=U,+U,— W, (5)

where U, and U, are respectively the strain energy of the elastic core and piezoelectric layer. The strain
energy of the piezoelectric layer can be expressed as

Up:/// l(sTa—DTE)pdl/pz/// <1sTCs—sTeTE—1ETxE) dry, (6)
v, 2 o \2 2 p

where V, is the volume of piezoelectric layer. For the elastic core, there is no piezoelectric and dielectric
effect, i.e. e =0 and x = 0, and its strain energy retains only the first term of Eq. (6), as

Ue:///ye (ésTCS)edVﬁ (7)

where V, is the volume of elastic core. For the laminate, the work done by the applied electric potential is

| i)

where S, is the area of surface with applied electric potential and Qp is surface charge per unit area of the
piezoelectric layer.

Because the elastic core is a thick structure, the Timoshenko beam model is adopted here. In this model,
all plane sections originally perpendicular to the longitudinal mid-axis remain plane, but not necessarily
perpendicular to the axis after deformation. Hereafter, we use x and z to indicate coordinates in the x;-
and x3-axes, respectively. For such a thick structure, strain quantities related to the x,-axis (or y-axis) van-
ish. The displacement components of the elastic core can be represented as

ue(x,z) = z0e(x),

©)

We(x,2) = we(x),
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where 0.(x) and we(x) are rotation and transverse displacement of the mid-axis of the elastic core, respec-
tively, and they are only functions depending on x. The strain components can be related to the displace-
ment and rotation of mid-axis as

Ou, do. ~ (Oue  Owe\ dw,
(Sl)e_a_za7 (85)5_<62+ ax>_<93+ dx> (10)

For an elastic core made of isotropic material, the relevant elastic constants are

(en). =E; (cs5), = K°G, (11)

where E, G are Young’s modulus and shear modulus, respectively, and x” is the shear correction factor
(Reissner, 1945; Mindlin, 1951) of the elastic core. Introducing dimensionless coordinates x = x/L,
z =z/L and dimensionless displacement components i, = u./L, w. = w,/L which are normalized with re-
spect to length L, the strain energy of the elastic core as given in Eq. (7) is

T N2
0 2
Ue _ /// l |:81:| |:C“ :l |:81:| bL // <6ue> G(@ue awe> d)_(fdf,
Ve 2 &5 0 Cs5 &s 0z Ox
(12)
where V, is volume of elastic core, b is width and 4. is normalized area in the ¥z-plane. Hence, substituting

Eq. (9) into Eq. (12) yields
2 _\2
< ) +x2G<He+ddxvf") ]d?dx

bLZ he/2
_7/ /he/z

bhoLE (5| B> [d0.\* 3G dw
= e e 0, ) |dx 13
2 oiuy(ﬁ)+_E< +w> | (13

where &, = he/L is the normalized thickness of elastic core.

For the piezoelectric layer, strain, displacement and electric quantities in the x- and z-axes must be re-
tained. For such a piezoelectric layer, the displacement components u,(x,z) and wy, (x, z) are functions of x
and z while the electric potential ¢,(z) is only dependent on z due to symmetry of the applied potential and
electric boundary conditions, i.e. (E}), = (E2), =0. Using the expressions of elastic, piezoelectric and
dielectric constants in Appendix A, the strain energy of piezoelectric layer as given in Eq. (6) can be ex-
pressed as

el [en ez 0 € al'[c e
U /// 1 ?1 e 0 sl Pl 0 . Er L[E Tk 0 7Ey drv
= = | € C C 5 — 5 e - =
p , B 3 13 €33 3 3 33 Es > Es 0 k33 Es
P
&5 0 0 Css5 &5 &5 €15 0 P
1
///{ Cllé;l+2Cl361&3+C3363+C5565]—63161E3—€;3&3E;—2k32E2} dV, (14)
p
where
Ou, ow, Ou, 0w, @(pp
Eh=% Eh=% Eh=g 1% Eh="%" (1)
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Substituting Egs. (15) into Eq. (14), integrating over width b and normalizing the quantities and coor-
dinate system yield

_ 2 — — — 2 — 2 — — — 2
b2 cu (Ot Oty Oy | c33 (O~ css | (Oy Gup O (O
Up =0t //A{z <ax) toenzta\z) T2 &) T e ) T\ e

ey V Ou, 00, eV 0w, 00, ki y? (a(pp>2}dfcdz (16)

L ox 0Oz L 0z 0z 2 I?

0z

where i, = u, /L, w, = w, /L are the dimensionless displacement components and ¢, = ¢,/V is the normal-
ized electric potential.

Integrating the work of applied electric in Eq. (8) over the top area with applied potential using the same
normalized coordinate system yield
Z=he /2+hy

1

1
Wy =50 o, =50, (17)

z=he/2
where Q = bLQ is total surface charge, h, = h,/L is the normalized thickness of piezoelectric layer and

z=he [2+hp

(pp|2:;le n o= V is the potential difference across the two electrodes. Substituting Eqs. (13), (16) and (17)
into Eq. (5) results in an energy functional as

bh.LE [ | B} [(d0\® «2G AN 5 e (i)’ o, Ow
=2t e e il e < ‘u [YUp Yy OWp
2 /,05 [12L2<dx> T <He+dx> dr - bL //AP 2 <8x) T &
_ 2 — 2 — — — 2
c (Qp)" css | (Olhp Otp Oy, (9%
+2<62)+2[<62 1% %) T\ &

631V aﬁp aQ_Dp 833V awp a(ﬁp k33 V2 a@p : o 1
L e L e e 2 2\e) (FEY (18)

3. Boundary conditions and continuity conditions

In using the variational energy method described in the next section, the model needs to satisfy the geo-
metric and electric boundary conditions at the edges, and the geometric and electric continuity conditions at
the interface. For a cantilever actuator, one end is fixed at x = —0.5 while the other at x = 0.5 is free, as
shown in Fig. 1. Therefore all displacement components at the fixed end must be zero, as

fle =We =10, =W, =0 atx=—0.5 (19)
and the gradients of W, and w, must also vanish at the clamped boundary, as

Ow, 0w,

ox  Ox
However, there is no strict requirement to satisfy the natural boundary conditions such as vanishing shear
force and bending moment at the free end. Numerical investigations showed that the natural boundary con-

ditions are safeguarded if adequate terms are included in the numerical analysis to ensure convergence of
numerical solutions.

=0 atx=—0.5. (20)
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For a laminated structure, the displacement components must be continuous across the interface. Hence,
on the interface at z = h/2,

e =, and w, = wp. (21)

For the piezoelectric layer sandwiched with two electrodes with negligible thickness and stiffness, an elec-
tric potential V is applied at the top electrode while of the underneath electrode is earthed. Hence, the elec-
tric boundary and interface conditions are

P, =1 atz:§+ﬁp (22a)
and

_ _ ke

9y =0 atz=73. (22b)

4. Admissible functions and nonhomogeneous equation

In the present study, the Ritz method with a variational energy functional is adopted (Reddy, 1984).
With reference to the boundary and interface conditions detailed in Section 3, the admissible displacements
functions of the elastic and piezoelectric layers can be represented as

fe =20, =2(x + 0.5)[C) + Co ¥+ O ¥ + CiX° +---] =2 C} 0L, (23)
i=1
We = (¥+05°[CL +Cx+CF+CLF+-] = Z Ci W, (24)
i=1

h h

ity = il + 1, ——e9e+(3_c+0.5)(z——e> [Cl +C25c+C3E+C4J?2+CSXE+C622+-~-]
P 2 up up up up up up

he me . mp
:TZceQeJchu i, (25)

= Z Ch oWl + Z Ci, Wh, (26)

where m, and m,, are the number of terms for the displacement components in elastic core and piezoelectric
layer, respectively. Similarly, the admissible electric potential function can be approximated as

_ k[ _ he - 1 2 -, 32 4 3
A ST
1 m(/,

= ile i —i
= (Z-g)}—l—p—‘rzlc%(pp, (27)

=

where m,, is the number of terms for the potential function.
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Based on the principle of extremum energy, the energy functional in Eq. (18) is minimized with respect to
the coefficients, C,, (« = Oc, we, up, wp, @), as
oI U, n ou, ow, oU. n U,
oc’ aC’ T acCt ac, act  ocC,
since W, =1 QV = constant and % = 0. Substituting Eqgs. (23)—(27) in Eq. (18) and Eq. (28) yields a set of
nonhomogeneous equation as

(28)

[K][C.) = [T (29)
or
kl]e()e k()ewe k()eup kerp 0 C()e 4
k WeWe k Wellp k WeWp 0 CWe O
kupup kupwp kup(/)p Cup = t3 ) (30)
kw}j Wp kwp Pp pr ZL4
sym Koyo, Co, 0

where [K], [C,] and [T] are the stiffness matrix, coefficient vector and external load vector, respectively.
Expressions of the elements of stiffness matrix are presented in Appendix B. Hence we have a system of
linearly independent simultaneous equations for the unknown coefficients which can be solved numerically.

5. Numerical examples of a laminated piezoelectric actuator

A laminated cantilever actuator under an applied potential difference as shown in Fig. 1 is considered. The
elastic core is steel and the piezoelectric layer is PZT-4. The material properties are shown in Table 1. A po-
tential difference V' is applied to the electrodes across the PZT-4 layer. In the examples, V' is varied from 10 V
to 40 V to investigate its effect. Moreover, the geometrical effect on the bending behaviour is also investigated.

5.1. Convergence study

A numerical convergence study is carried out to determine the optimal number of terms required in the
displacement functions #,, W, i,, w, and the potential function ¢,. At the beginning, the number of terms

Table 1
Material properties
Elastic core (steel) Piezoelectric layer (PZT-4)

Length, m 0.3 0.3
Thickness, m 0.02 0.005
Poisson’s ratio 0.3 -
Elastic constants, GPa E=210 ¢ =139

Clp = 77.8

C13 = 74.3

C33 = 113

Cq4 = 25.6
Piezoelectric constants, ¢/m> ez = —6.98

e3; = 13.84

€15 — 13.44
Dielectric constants, ¢/vm Ky =6x10"°

K33 =547x107°
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in @, in Eq. (27) is invariant while deflection solutions are determined by varying the number of terms m, in
Eqgs. (23) and (24) adopted in #. and w, for the elastic core and m1, in Egs. (25) and (26) adopted in %, and w,
for the PZT-4 layer. Here, Egs. (23) and (24) involve polynomial X-terms in an ascending order. For Egs.
(25) and (26), however, we do not adopt a polynomial xz-terms in a complete ascending order because the
laminated piezoelectric beam under investigation has a x-dimension an order higher than the z-dimension.
Only the linear z-terms are retained while the order of x-terms are increased. Accordingly, the modified dis-
placement functions for #, and w, involve polynomial terms of the pattern

C'+ C% 4 Cz 4 C*'%* + Cxz + CF + C'%%2 + C%%* + C°x'z + C'%° + CVx%z - -
The choice of such polynomials improves the numerical convergence markedly.

The convergence result is tabulated in Table 2(a) for '=10 V and in Table 2(b) for =40 V. It is ob-
served that the deflection w, at X = 0.5 and z = h./2 + h, converges as m, is increased. The deflection

Table 2
Convergence study for W, at ¥ = 0.5 and z = h./2 + &, with increasing terms in displacement functions of elastic core m,, and of
piezoelectric layer my, for L =10.3 m, 4. =0.02m, 4, =0.005m and (a) V=10V, (b) V=40V

my M,

2 3 4 5 6 7 8
(a)
3 297.8 300.3 301.6 301.7 301.7 301.7 301.7
4 338.0 342.2 342.5 343.2 343.2 343.2 343.2
5 338.2 342.5 342.7 343.4 3434 3434 3434
6 361.1 362.2 365.7 365.8 366.7 366.7 366.7
7 361.1 364.2 365.8 365.9 366.8 366.8 366.7
8 377.4 379.6 381.0 381.6 381.6 382.1 382.1
9 377.6 379.8 381.1 381.8 381.8 382.3 382.3
10 387.4 389.0 389.9 390.7 390.8 390.8 391.3
11 387.4 389.0 389.9 390.7 390.8 390.8 391.3
12 395.6 396.7 397.3 398.1 398.4 398.5 398.5
13 395.9 397.0 397.6 398.4 398.6 398.7 398.7
14 400.7 401.6 401.9 402.6 402.8 402.9 402.9
15 400.7 401.6 401.9 402.6 402.8 402.9 402.9
16 405.4 406.1 406.2 406.8 407.0 407.2 407.3
17 405.7 406.3 406.5 407.1 407.2 407.4 407.4
18 408.3 408.8 408.9 409.4 409.4 409.7 409.7
(b)
3 1191 1201 1206 1207 1207 1207 1207
4 1352 1369 1370 1373 1373 1373 1373
5 1353 1370 1371 1374 1374 1374 1374
6 1444 1457 1463 1463 1467 1467 1467
7 1444 1457 1463 1464 1467 1467 1467
8 1510 1518 1524 1527 1526 1528 1528
9 1510 1519 1525 1527 1527 1529 1529
10 1550 1556 1560 1563 1563 1563 1565
11 1550 1556 1560 1563 1563 1563 1565
12 1582 1587 1589 1592 1594 1594 1594
13 1583 1588 1590 1593 1594 1595 1595
14 1603 1606 1608 1610 1611 1612 1612
15 1603 1606 1608 1610 1611 1612 1612
16 1622 1624 1625 1627 1628 1629 1629
17 1623 1625 1626 1628 1629 1630 1630

18 1633 1635 1636 1637 1638 1639 1639
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Table 3
Convergence study for #, at ¥ = 0.5 and z = k. /2 + h, with increasing terms in electric potential function of piezoelectric layer m,, for
L=03m, h,=0.02m and A, =0.005 m

Applied voltage, V' m,

2 3 4
10 381.8 381.8 382.8
40 1572.3 1572.3 1572.3

converges to a relatively steady value when m, = 5. Therefore, m. = 5 is assumed in subsequent calculation
unless otherwise stated. Likewise, m,, is also increased gradually to investigate its effect on numerical con-
vergence. It is observed that marked increases in the deflection w, at ¥ = 0.5 and z = h./2 + h, is only re-
corded when the order of polynomial (the sum of the powers of X and y) increases. However when m, = 19,
numerical ill-conditioning of eigenvalue evaluation occurs. Since satisfactory convergence of wy, is observed
when there are 18 terms, m, = 18 is assumed in subsequent calculation.

Similar treatment has been used to investigate convergence of the potential function @,. In this case, the
number of m, = 5 and m, = 18 are maintained while the number of terms for potential function, m,, in Eq.
(27) increases. The results are tabulated in Table 3. It can be observed that ¢, converges very quickly and
only two terms are required to ensure satisfactory convergence. Therefore, the number of terms for ¢, is
chosen as m, = 2.

5.2. Verification of numerical solutions

Having determined numerical convergence, the numerical solutions must be verified in order to ensure
accuracy of the approach. Here, we refer to both published data of Lin et al. (2000) and finite element (FE)
solutions using ABAQUS (2002), a commercial software package. With reference to Lin et al. (2000), the
actuator has L =0.3m, s, =0.02m, /1, =0.005m and V=10 V.

Lin et al. (2000) derived an analytic solution of the same problem by using constitutive elastic—piezoelec-
tric relationships. They adopted a first order and second order polynomial functions for horizontal and ver-
tical displacement components, respectively. As it has been indicated in Section 5.1 that we require
polynomial of order four (m. =5 terms) for elastic core and polynomial of order nine (m, = 18 terms)
for PZT-4 layer to ensure numerical convergence, it is expected that the analysis of Lin et al. (2000) results
in a structure which is too stiff and with poor convergence.

In using ABAQUS for FE analysis of the laminated piezoelectric actuator, a technical implementation
has to be justified. Here we built a three-dimensional actuator with finite width in the y-dimension. For exe-
cuting this 3-D actuator in ABAQUS, inputs for all 3-D elastic, piezoelectric and dielectric constants are
required. In order to simulate a (x,z) two-dimensional plate-like actuator as shown in Fig. 1, the stiffness
in the y-dimension (equivalent to the thickness direction for bending of a plate) is increased to a level such
that the strain components in that direction is negligible. This condition is equivalent to the transverse
thickness inextensibility restriction for bending of a plate in which transverse deflection through thickness
is the same as the transverse deflection of the mid-plane, i.e. the deflection is a constant along the thickness
y-direction. It should be indicated that mesh convergence of FE solutions has also been verified. As this is a
standard procedure, it is sufficient here only to mention that the mesh has been increased from 360 elements
to 7500 steadily in seven steps (360, 525, 900, 1200, 1800, 3400 and 7500) and downward convergent tip
deflection solution of the beam has been verified. Further finer meshes result in unstable FE solutions.
All subsequent FE solutions are based on a mesh of 7500 elements.
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A comparison study is presented in Figs. 2-6. In these figures, the results of Lin et al. (2000), FE solu-
tions and the computational solutions of this paper are compared. Originally, Lin et al. (2000) presented
results for the applied potential of 10 V only. Since the study in this paper extended the applied voltage
to 40 V, we worked out the results of 40 V from analytical expressions of Lin et al. (2000) which are pre-
sented in Figs. 7-11 for comparison.

The dimensional horizontal displacement component u, of the PZT-4 layer with an applied potential
of 10 V along the actuator on the surface at z = h./2 + h, is shown in Fig. 2. In general, u,, in this study
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Fig. 2. The displacement u, of the piezoelectric layer at the actuator free-end z = /2 + hy, with V=10V,
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Fig. 3. The displacement w,, of the piezoelectric layer at the actuator free-end z = he/2 + h, with ¥'=10V.
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Fig. 4. The displacement w, of the elastic layer at the actuator free-end z =0 with V=10 V.
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Fig. 5. The displacement u at the mid-span x =0 with V=10 V.

is in better agreement with the FE solution and both are larger than the results of Lin’s et al. (2000). It is
interesting to observe that the FE solution oscillates from the clamped boundary towards the free bound-
ary. It is due to numerical instability as the magnitude of u, is of an order smaller than w,. As explain
in Section 5.2, the solution of Lin et al. (2000) is rather poor because a second order polynomial displace-
ment function was used in the study. As concluded in the convergence study, the second order polynomial
function has inadequate terms resulting in a stiffer structure and thus smaller displacement as shown in
Fig. 2.
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Fig. 6. The displacement w at the mid-span x =0 with V'=10V.
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Fig. 7. The displacement u;, of the piezoelectric layer at the actuator free-end z = he/2 + h, with V=40 V.

Figs. 3 and 4 show the vertical displacement components w, at Z =0 and w, at z = he/2 + l_1p along the
actuator for both elastic layer and PZT-4 layer with J"= 10 V. In both cases, the result of this study is closer
to the FE solution and both are, again, larger than that of Lin et al. (2000). For instance, at the free end
x = 0.15 m of actuator in Fig. 3, the magnitude of w, is approximately 409 nm and 364 nm according to the
analyses in this study and FE, respectively, while it is approximately 280 nm as reported in Lin et al. (2000).
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Fig. 9. The displacement w, of the elastic layer verses x at the actuator free-end z =0 with '=40V.

Oscillatory response of FE solution does not occur here because w. and wy, have an-order-higher dominat-
ing magnitude over u, and thus avoiding numerical instability.

Figs. 5 and 6 illustrate the respective vertical and horizontal displacement components u, and u, through
the thickness along the cross section at the mid-span x = 0. In both figures, the solutions of this study and
FE have the same rate of response and both are larger than the solution of Lin et al. (2000). Again, agree-
ment of the solutions of this study and FE is much better.

The argument above is further verified by examples using a larger applied potential difference of
V=40 V. Comparing with Figs. 2-6, it is clear that the results in Figs. 7-11 have similar patterns and com-
ments with respect to those of =10V in Figs. 2-6.
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Fig. 11. The displacement components w, and w,, at mid-span x =0 with '=40V.

5.3. Effect of electric potential, thickness ratio and length on actuation response

Different actuator geometric configurations based on the same example above are conducted to
investigate the effect of the geometric parameters such as dimensionless thickness ratios 4. and %, to the
response of the laminated actuator. The response is investigated with respect to varying dimensionless
potential difference in the range of V/V, =V =1 to V =4 where V, =10V is a reference potential
difference.

As shown in Fig. 12, deflection response #, at ¥ = 0.5 and z = h/2 + h, is directly proportional to the
applied voltage and thus 7 has a linear effect of the structural response. This figure also illustrates the effects
of increasing thickness l_zp of PZT-4 layer from 1/60 to 1/15 while keeping the thickness of elastic core as
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Fig. 13. Effect of the length ratio /. to the deflection w, at ¥ = 0.5 and z = A /2 + h,,.

h. = 1/15 as that used in Lin et al. (2000). Hence the total thickness of the actuator increases gradually
from 1/12 to 2/15. As the stiffness of a structure increases with respect to thickness, w, decreases as A, is
increased as shown in Fig. 12.

As illustrated in Fig. 13, varying only the length of actuator L while keeping the thickness /. constant
with the same applied voltage increases the deflection w, atx = 0.5and z = he/2 + ftp. In this case, %, varies
from 1/10 to 2/35. The result is obvious since the longer the actuator the more flexible it becomes. In addi-
tion, the rate of increase of the deflection to the applied voltage is also larger for a longer actuator. The
argument is further verified in Fig. 14. In this case, the applied voltage is constant for each case ranging
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Fig. 14. Effect of applied voltage 7 to the deflection w, at ¥ = 0.5 and z = h/2 + &,.

from ¥ =1 to V = 4. The actuator deflection w, decreases by increasing he since the actuator becomes
shorter and stiffer. The rate of decrease slows down as /. increases.

6. Conclusion

An efficient two-dimensional laminate model is developed to investigate the actuation response of a thick
laminated piezoelectric actuator. The piezoelectric model is constructed within the scope of linear piezoelec-
tricity for low electric drive inputs and linear piezoelectric constitutive relations. The presence of hysteresis
and nonlinear piezoelectric constitutive relations for high electric drive inputs will form an important exten-
sion of this paper.

The piezoelectric laminate model is based on the coupling of a one-dimensional thick layer and a two-
dimensional linear piezoelectric layer. The problem is solved via the variational extremum energy principle.
Although the model only ensures continuity of displacement across the layer interface, the results from the
model are in good agreement with the finite element solutions. The solutions of Lin et al. (2000) are poor
because inadequate terms were used in their polynomial displacement functions. This two-dimensional lam-
inate model can be easily and readily developed to investigate a multi-layer piezoelectric laminated
actuator.

Numerical results of a thick laminated cantilever actuator under an applied potential difference are dis-
cussed. It has been concluded that the electric potential developed across the piezoelectric layer is linear
through the thickness. In addition, the deflection response of the actuator is also directly proportional
to the applied voltage. The approach and information presented here are of practical interest in engineering
control using an actuator. It can also be adapted as a sensor/actuator.
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Appendix A

The matrices C, e and x in (3) are given as

ey e a3 O 0 0]
c, en c3 0 0 0
ci3 c3 e 0 0 0
C= ,  where ¢cg¢ = (c11 — c12)/2,
0 0 0 cu 0 0 66 (11 12)/
0 0 0 0 Cyq 0
(0 0 0 0 0 ce]
0 0 0 0 es 0 ki 0 0
€= 0 0 0 €1s 0 0 , K= 0 k11 0
€31 €3] €33 0 0 0 0 0 k33

Appendix B

The strain energy of the elastic layer is
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The strain energy of the piezoelectric layer is
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